

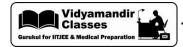
(

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration : 90 Min
Actual Date of Attempt ://	Level-2	Exact Duration :

106.
$$H_{3}C - C - OH + C_{2}H_{5} \stackrel{18}{OH} \xrightarrow{Conc.H_{2}SO_{4}} (X)$$

$$O$$

$$H_{3}C - C - OH + (CH_{3})_{3} C - OH \xrightarrow{Conc.H_{2}SO_{4}} (Y)$$
In the above reaction (X) and (Y) are respectively:


(A)
$$\begin{array}{c} O & O & CH_3 \\ \parallel & 18 & \parallel & \parallel & \parallel \\ CH_3 - C - O - C_2H_5 \text{ and } CH_3 - C - O - C - CH_3 \\ \parallel & CH_3 \end{array}$$

(B)
$$H_3C - C - O - C_2H_5$$
 and $H_3C - C - O - C - CH_3$

(D)
$$\begin{array}{c} O & O & CH_3 \\ \parallel & \parallel & 18 & \parallel \\ CH_3-C-O-C_2H_5 \text{ and } CH_3-C-O-C-CH_3 \\ \parallel & \parallel & \parallel \\ CH_3 \end{array}$$

107.
$$\xrightarrow{\text{COOH}} \xrightarrow{\text{SOCl}_2} \xrightarrow{\text{NH}_3} \xrightarrow{\text{Br}_2 + \text{KOH}} \text{Product}$$

108. Find the structure of compound R:

- 109. $NH_2 \xrightarrow{NaOH \text{ (dil.)}} Product formed will be :$
 - $\bigcap_{O}^{\operatorname{Br}} \operatorname{NH}_2$
 - (B)
- O Br NH₂

 Me
 (C) (D)
- 110. OH $OH \longrightarrow OH \longrightarrow OH \longrightarrow OH$ Product :

(A)

- (A) $H_2C = CH CH_2 CH_2 C OH$
 - |- C- OH **(B)**
- (c) 0

- (D) O
- 111. OOH $Conc. H_2SO_4$ Product :
 - (A) O O O

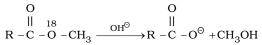
(B) O

(C) H_2O , CO_2 and CO

(D) HCOOH

112. In the given reaction :

$$\text{CH}_3\text{CN} \xrightarrow{\text{CH}_3\text{Br/NaNH}_2} \text{CH}_3\text{CH}_2\text{CN} ,$$


intermediate is _____ and path is _____:

(A) $\bar{C}H_2CN, S_N1$

(B) $\bar{C}H_2CN, S_N 2$

(C) $\bar{N}H_2$, $S_N 1$

- **(D)** $\bar{C}H_3, S_N 2$
- *113. Select correct statement for the following base-catalysed hydrolysis :

- (A) It is a nucleophilic acyl substitution (addition-elimination reaction)
 - 18
- (B) O appears in methanol CH₃OH
- **(C)** The reaction is not reversible
 - 1
- **(D)** O appears is carboxylate ion

(

- *114. In Claisen condensation reaction :
 - (A) A proton is removed from the $\,\alpha$ -carbon to form a resonance-stabilized carbanion
 - **(B)** The carbanion acts as a nucleophile in a nucleophilic acyl substitution reaction with another ester molecule
 - **(C)** A new C C bond is formed
 - **(D)** The product formed has an active methylene group

115. Ester
$$\xrightarrow{\text{LiAlH}_4}$$
 CH₃CH₂OH (only)

Ester $\xrightarrow{\text{(i) NaOC}_2\text{H}_5}$ A

A is: